1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
//#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define endl "\n"
#define int long long
using namespace std;
const int N = 1e5+10;
const int inf = 1e18+10;
struct node {
int data, lazy = 0;
};
void build(const vector<int> &data, vector<node> &tree, int rt, int left, int right) {
tree[rt].lazy = 0;
if (left == right) {
tree[rt].data = data[left];//叶子节点
return;
}
int mid = left + (right - left) / 2;
build(data, tree, 2*rt, left, mid);//递归构建左子树
build(data, tree, 2*rt + 1, mid + 1, right);//递归构建右子树
tree[rt].data = max(tree[2 * rt].data, tree[2 * rt + 1].data);//更新当前节点的值
}
void pushDown(vector<node> &tree, int rt) {
if(tree[rt].lazy != 0) {
//更新左子树
tree[2 * rt].data += tree[rt].lazy;
tree[2 * rt].lazy += tree[rt].lazy;
//更新右子树
tree[2 * rt + 1].data += tree[rt].lazy;
tree[2 * rt + 1].lazy += tree[rt].lazy;
//清空当前节点的懒标记
tree[rt].lazy = 0;
}
}
int query(vector<node> &tree, int rt, int left,int right,int ql,int qr) {
if (ql > right || qr < left) {
return -inf; // 若区间无交集,返回最小值,表明该区间对结果无贡献
}
if (ql <= left && qr >= right) {
return tree[rt].data; // 若完全包含,直接返回当前节点的值
}
int mid = left + (right - left) / 2;
pushDown(tree, rt); // 若当前节点有延迟标记,将其下推到子节点
int leftMax = query(tree, 2*rt, left, mid, ql, qr); // 递归查询左子树
int rightMax = query(tree, 2*rt+1, mid+1, right, ql, qr); // 递归查询右子树
return max(leftMax, rightMax);
}
void update(vector<node> &tree, int rt, int left, int right, int idx, int value) {
if(left == right){
tree[rt].data += value;
tree[rt].lazy = 0;//找到目标节点,更新值
return;
}
int mid = left + (right - left) / 2;
pushDown(tree, rt);//处理懒标记
if(idx <= mid) update(tree, 2*rt, left, mid, idx, value);
else update(tree, 2*rt+1, mid+1, right, idx, value);
tree[rt].data = max(tree[rt*2].data, tree[rt*2+1].data);
}
int n,m;
int pre_wealth[N];
vector<int> g[N];
vector<node> tree;
vector<int> nw(N,0);
int dep[N],sz[N],son[N],fa[N],top[N],idx[N],cnt;
int flag[N];
void depdfs(int u,int father)
{
fa[u] = father,dep[u]=dep[father]+1,sz[u] = 1;
for(auto v : g[u])
{
if(v==father) continue;
depdfs(v,u);
sz[u] += sz[v];
if(sz[son[u]]<sz[v]) son[u] = v;
}
}
void dfs(int u,int t)
{
top[u] = t;
idx[u] = ++cnt;
nw[cnt] = pre_wealth[u];
if(!son[u]) return;
dfs(son[u],t);
for(auto v : g[u])
{
if(v==fa[u] or v==son[u]) continue;
dfs(v,v);
}
}
int query_path(int u,int v)
{
int res = -inf;
while(top[u]!=top[v])
{
if(dep[top[u]]<dep[top[v]]) swap(u,v);
if(fa[u]!=0 and son[fa[u]]!=u)
res = max(res,query(tree,1,1,n,idx[u],idx[u])+flag[fa[u]]);
if(fa[v]!=0 and son[fa[v]]!=v)
res = max(res,query(tree,1,1,n,idx[v],idx[v])+flag[fa[v]]);
res = max(res,query(tree,1,1,n,idx[top[u]],idx[u]));
if(fa[top[u]]!=0 and son[fa[top[u]]]!=top[u])
res = max(res,query(tree,1,1,n,idx[top[u]],idx[top[u]])+flag[fa[top[u]]]);
u = fa[top[u]];
}
if(dep[u]<dep[v]) swap(u,v);
if(fa[u]!=0 and son[fa[u]]!=u)
res = max(res,query(tree,1,1,n,idx[u],idx[u])+flag[fa[u]]);
if(fa[v]!=0 and son[fa[v]]!=v)
res = max(res,query(tree,1,1,n,idx[v],idx[v])+flag[fa[v]]);
res = max(res,query(tree,1,1,n,idx[v],idx[u]));
return res;
}
void update_path(int u,int z)
{
flag[u]+=z;
if(son[u]!=0) update(tree,1,1,n,idx[son[u]],z);
if(fa[u]!=0) update(tree,1,1,n,idx[fa[u]],z);
}
void solve()
{
cin >> n >> m;
cnt = 0;
tree.clear();
tree.resize(4 * n + 5);
for (int i = 1; i <= n; i++)
{
cin >> pre_wealth[i];
g[i].clear();
dep[i] = sz[i] = son[i] = fa[i] = top[i] = idx[i] = nw[i] = flag[i] = 0;
}
for(int i=1;i<=n-1;i++)
{
int u,v;cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
depdfs(1,0);
dfs(1,1);
build(nw,tree,1,1,n);
for(int i=1;i<=m;i++)
{
int op;cin >> op;
if(op==1)
{
int x,y;cin >> x >> y;
cout << query_path(x,y) << endl;
}
else
{
int x,z;cin >> x >> z;
update_path(x,z);
}
}
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int _ = 1;
cin >> _;
while(_--)
{
solve();
}
return 0;
}
|